Балаковский инженерно-технологический институт — филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

Факультет атомной энергетики и технологий Кафедра «Промышленное и гражданское строительство»

РАБОЧАЯ ПРОГРАММА

по дисциплине «Теория ползучести»

Направления подготовки 08.03.01 «Строительство»

Основная профессиональная образовательная программа:

«Промышленное и гражданское строительство»

Квалификация выпускника Бакалавр

Форма обучения Очная

Цель освоения учебной дисциплины

Цель преподавания дисциплины:

приобретение будущими бакалаврами-строителями знаний, навыков, умений по вопросам обеспечения механической надёжности сложных пространственных элементов конструкций, необходимых для изучения курсов «Основания и фундаменты» и в дальнейшей практической работе.

Задачи изучения дисциплины:

приобретение студентами навыков расчётов сложных элементов конструкций, пространственных конструкций, сооружений, деталей машин на прочность, жёсткость и устойчивость.

Место учебной дисциплины в структуре ООП ВО

Логическая и содержательно-методическая взаимосвязь с другими частями ООП включает перечень дисциплин, усвоение которых студентами необходимо для изучения курса «Теория ползучести».

1. Математика.

Фундаментальные основы высшей математики, включая алгебру, геометрию, математический анализ, теорию вероятностей и основы математической статистики.

2. Информатика.

Основные понятия информатики, современные средства вычислительной техники, основы алгоритмического языка и технологию составления программ.

3. Инженерная графика.

Основные законы геометрического формирования, построения и взаимного пересечения моделей плоскости и пространства, необходимые для чтения чертежей зданий, сооружений, конструкций, составления конструкторской документации и деталей.

4. Физика.

Основные физические явления, фундаментальные понятия, законы и теории классической и современной физики.

5. Теоретическая механика.

Основные подходы к формализации и моделированию движения и равновесия материальных тел.

Сопротивление материалов.

Формирование расчётных схем строительных конструкций, определение геометрических характеристик плоских сечений, механических характеристик материалов, необходимых для проведения расчетов простейших элементов сооружений на прочность, жесткость и устойчивость.

Строительная механика.

Основные понятия и методы строительной механики, приёмы определения усилий и перемещений в элементах строительных конструкций, навыки расчётов строительных конструкций и сооружений.

Компетенции обучающегося, формируемые в результате освоения дисциплины В процессе освоения данной дисциплины у студента формируются следующие компетенции:

универсальные			
	Код ком-	Наименование компе-	Индикаторы достижения компетенции
	петенции	тенции	индикаторы достижения компетенции
	УК-2	способен определять	3-УК-2 Знать: виды ресурсов и ограничений для решения про-
		круг задач в рамках	фессиональных задач; основные методы оценки разных спосо-
		поставленной цели и	бов решения задач; действующее законодательство и правовые
		выбирать оптималь-	нормы, регулирующие профессиональную деятельность
		ные способы их реше-	У-УК-2 Уметь: проводить анализ поставленной цели и форму-
		ния, исходя из дей-	лировать задачи, которые необходимо решить для ее достиже-
ствующих правовых		ствующих правовых	ния; анализировать альтернативные варианты решений для до-
норм, имеющихся ре-		норм, имеющихся ре-	стижения намеченных результатов; использовать нормативно-
сурсов и ограничени		сурсов и ограничений	правовую документацию в сфере профессиональной деятель-
			ности
			В-УК-2 Владеть: методиками разработки цели и задач проекта;
			методами оценки потребности в ресурсах, продолжительности
			и стоимости проекта, навыками работы с нормативно-правовой
			покументанней

профессиональные

профессио	профессиональные				
Код ком-	Наименование компе-	Индикаторы достижения компетенции			
петенции	тенции	индикаторы достижения компетенции			
ПК-1	Способен использо-	3-ПК-1 Знать: нормативно-техническую и методическую доку-			
	вать знания норма-	ментацию, регламентирующую проведение инженерных изыс-			
	тивной базы в области	каний в сфере промышленного и гражданского строительства			
	инженерных изыска-	У-ПК-1 Уметь: выбирать и систематизировать информацию в			
	ний, методов прове-	области инженерных изысканий и проводить инженерные			
	дения инженерных	изыскания, необходимые в области промышленного и граж-			
	изысканий	данского строительства			
		В-ПК-1 Владеть: методами проведения инженерных изысканий			
		при строительстве промышленных и гражданских зданий и со-			
		оружений			

Задачи воспитания, реализуемые в рамках освоения дисциплины

В процессе освоения данной дисциплины реализуются следующие задачи воспитания:

В процессе	т при	ециплины реализуются следующие зада	
Направление/ цели	Создание условий, обеспечивающих	Использование воспитательного потенциала учебной дисциплины	Вовлечение в разноплановую внеучебную
	П	[деятельность
TT 1		рофессиональный модуль	1.0
Профессионал	- формирование	1.Использование воспитательного	1.Организация
ьное	чувства личной	потенциала дисциплин профессио-	научно-практических
воспитание	ответственности	нального модуля для формирования	конференций,
	за научно-	чувства личной ответственности за	круглых столов,
	технологическое	достижение лидерства России в ве-	встреч с ведущими
	развитие России,	дущих научно-технических секторах	специалистами
	за результаты	и фундаментальных исследованиях,	предприятий
	исследований и их	обеспечивающих ее экономическое	экономического
	последствия (В17)	развитие и внешнюю безопасность,	сектора города по
		посредством контекстного обучения,	вопросам
		обсуждения социальной и практиче-	технологического
		ской значимости результатов науч-	лидерства России.
		ных исследований и технологических	
		разработок.	
		2.Использование воспитательного	
		потенциала дисциплин профессио-	
		нального модуля для формирования	
		социальной ответственности ученого	
		за результаты исследований и их по-	
		следствия, развития исследователь-	
		ских качеств посредством выполне-	
		ния учебно-исследовательских зада-	
		ний, ориентированных на изучение и	
		проверку научных фактов, критиче-	
		ский анализ публикаций в професси-	
		ональной области, вовлечения в ре-	
		альные междисциплинарные научно-	
		исследовательские проекты.	

Структура и содержание учебной дисциплины Дисциплина преподается студентам в 5-ом семестре. Общая трудоемкость дисциплины составляет 3 зачетных единицы, 108 ак. часов.

Календарный план

No			Виды учебной деятельности (в			сти (в			
P	№		часах)				Макси-		
a	T.				le	1e		Аттеста-	мальный
3		Наименование раздела		И)HE	CKI		ция раз-	мальныи балл за
Д	e	(темы) дисциплины	910	ПЛ	гог	He.	CPC	дела	
e	M		Всего	Лекции	pa	СТИ	CF	(форма*)	раздел **
Л	Ы				Лабораторные	Практические			3,-3,-
a					ЛЕ				
1	1	Основные соотношения	54	8		8	38	T.1	25
		теории ползучести							
2	2	Технические теории пол-	54	8		8	38	T.2	25
		зучести							
		Итого	108	16		16	76		50
Вид промежуточной аттестации								3	50

^{* -} сокращенное наименование формы контроля

^{** -} сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен Сокрашенное наименование форм текущего контроля и аттестации разделов:

Обозначение	Полное наименование
T	Тестирование
3	Зачет

Содержание лекционного курса

Тема лекции. Вопросы, отрабатываемые на лекции	Всего часов	Учебно- методическое обеспечение
1	2	3
1. Основные соотношения теории ползучести. 1.1. Ползучесть и релакса-	2	1-4
ция напряжений. 1.2. Кривые ползучести. 1.3. Основные характеристики		
ползучести материалов. 1.4. Предел ползучести.		
1.5. Длительная прочность. 1.6. Влияние различных факторов на длитель-	2	1-4
ную прочность. 1.7. Определение коэффициента запаса.		
2. Технические теории ползучести.	2	1-4
2.1. Основные понятия. 2.2. Теория старения. 2.3. Тео-рия течения. 2.4. Тео-		
рия упрочнения.		
2.5. Теория ползучести с анизотропным упрочнением. 2.6. Анализ теорий	2	1-4
ползучести и их экспериментальная проверка. 2.7. Особенности кратковре-		
менной ползучести.		
2.8. Установившаяся и неустановившаяся ползучесть. 2.9. Понятие о дли-	2	1-4
тельной прочности. 2.10. Длительная прочность при неодноосном напря-		
жённом состоянии.		
3. Методы решения задач ползучести. 3.1. Решение задач установившейся	2	1-4
ползучести. 3.1.1. Чистый изгиб бруса. 3.1.2. Прямой поперечный изгиб		
бруса. 3.1.3. Тонкостенные цилиндрические трубы. 3.1.4. Толстостенные		
трубы.		
3.2. Решение задач неустановившейся ползучести.	2	1-4
3.2.1. Теория старения. 3.2.2. Теория течения. 3.2.3. Теория упрочнения.		
3.2.4. Принцип минимума дополнительной мощности.		
3.3. Определение времени до разрушения.	2	1-4
3.3.1. Растяжение стержня. 3.3.2. Кручение круглого стержня. 3.3.3. Тонко-		
стенные трубы.		
Итого	16	

Перечень практических занятий

Tiepe tenb npakth teekha sanathn				
Тема практического занятия. Задания, вопросы, отрабатываемые на практическом занятии	Всего часов	Учебно- методическое обеспечение		
1	2	3		
Аппроксимация экспериментальных кривых ползучести различными зависимостями. Определение значений коэффициентов моделей ползучести.	2	1-4		
Аппроксимация экспериментальных кривых длительной прочности различными зависимостями. Определение значений коэффициентов моделей длительной прочности.	2	1-4		
Вывод уравнений технической теории ползучести для различных элементов с использованием модели теории старения.	2	1-4		
Вывод уравнений технической теории ползучести для различных элементов с использованием модели теории течения.	2	1-4		
Вывод уравнений технической теории ползучести для различных элементов с использованием модели теории упрочнения.	2	1-4		
Решение задачи чистого изгиба бруса с использованием теории установившейся ползучести.	2	1-4		
Решение задачи прямого поперечного изгиба бруса с использованием теории установившейся ползучести.	4	1-4		
Итого	16			

Перечень лабораторных работ - не предусмотрены учебным планом

Задания для самостоятельной работы студентов

	Всего	Учебно-
Задания, вопросы, для самостоятельного изучения (задания)	Часов	методическое
	часов	обеспечение
1	2	3
Низкотемпературная ползучесть бетона и полимерных материалов.	10	1-4
Модели расчёта конструкций из железобетона с учётом явлений ползу-	10	1-4
чести, из композитных материалов на основе полиэфирных смол, арми-		
рованных стекловолокном, углеродными, базальтовыми волокнами. Ре-		
ономные и склерономные модели ползучести композитных материалов.		
Использование различных вариантов технической теории ползучести	10	1-4
для расчёта элементов конструкций из композиционных материалов, в		
том числе железобетона.		
Расчёт изгиба железобетонных и полимербетонных балок на основе мо-	16	1-4
дели установившейся и неустановившейся ползучести. Анализ надёжно-		
сти элементов из композитных материалов.		
Математическая модель ползучести на основе теории накопления дис-	10	1-4
персных повреждений.		
Уравнения расчёта долговечности элементов конструкций, расчёт ли-	10	1-4
нейных и квазилинейных элементов (стержней, стержневых систем,		
тонкостенных цилиндрических оболочек).		
Реологические основы механики грунтов. Реономные модели грунтовых	10	1-4
оснований. Расчёт конструкций на просадочных грунтах. Прогноз де-		
формации неустановившейся затухающей ползучести грунтовых осно-		
ваний на основе линейной (в отношении напряжений) теории на след-		
ственной ползучести Больцмана-Вольтерра.		
Итого	76	

Курсовая работа не предусмотрена учебным планом

Курсовой проект не предусмотрен учебным планом

Образовательные технологии

При реализации учебного материала курса используются различные образовательные технологии, способствующие созданию атмосферы свободной и творческой дискуссии как между преподавателем и студентами, так и в студенческой группе. Целью при этом является выработка у студентов навыков и компетенций, позволяющих самостоятельно вести исследовательскую и научнопедагогическую работу.

Аудиторные занятия проводятся в виде лекций с использованием ПК и компьютерного проектора, практических занятий, с использованием ПК при проведении расчетов. Самостоятельная работа студентов проводится под руководством преподавателей, с оказанием консультаций и помощи при выполнении домашних заданий

Фонд оценочных средств

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

$\frac{1}{2}$	следующей таблице.							
№	Наименование контроли-	Код и наименование индикато-	Наименование					
Π/Π	руемых разделов (темы)	ра достижения компетенций	оценочного средства					
	Входной контроль							
1	Входной контроль		Вопросы входного кон-					
1	Входной контроль		троля					
	Аттестация р	разделов, текущий контроль успева	аемости					
2	Основные соотношения теории ползучести	3-УК-2, У- УК-2, В- УК-2	Тестирование (письменно)					
3	Технические теории пол-	3-ПК-1,У-ПК-1, В-ПК-1, 3-УК-2,	Тестирование (письменно)					
	зучести	У- УК-2, В- УК-2						
	Промежуточная аттестация							
5	Зачет	3-ПК-1,У-ПК-1, В-ПК-1,	Вопросы к зачету (пись-					
		3-УК-2, У- УК-2, В- УК-2	менно)					

Входной контроль предназначен для выявления пробелов в знаниях студентов и готовности их к получению новых знаний. Оценочные средства для входного контроля представляют собой вопросы, которые задаются студентам в устной форме.

Перечень вопросов входного контроля

Вопросы входного контроля.

- 1. Виды внешних силовых воздействий.
- 2. Момент пары сил.
- 3. Сосредоточенные и распределённые силы.
- 4. Момент силы относительно точки.
- 5. Вычисление площадей простейших геометрических фигур.
- 6. Определение реакций опор статически определимых систем.
- 7. Определённый интеграл.
- 8. Производная и дифференциал.
- 9. Решение линейных алгебраических уравнений.
- 10. Дифференциальные уравнения в частных производных.
- 11. Обыкновенные дифференциальные уравнения.
- 12. Общий интеграл и частное решение дифференциального уравнения.
- 13. Принцип Даламбера.
- 14. Кинетическая и потенциальная энергия.

- 15. Работа внешних сил.
- 16. Устойчивое и неустойчивое равновесие.
- 17. Англоязычные термины механики.
- 18. Основные гипотезы и принципы механики.
- 19. Расчётная схема.
- 20. Геометрические характеристики плоских сечений.
- 21. Внутренние силовые факторы.
- 22. Определение усилий в статически определимых системах.
- 23. Определение усилий при сложном напряжённом состоянии.
- 24. Механические характеристики материала.
- 25. Методы расчёта элементов конструкций на прочность и жёсткость.
- 26. Расчёт элементов на прочность и жёсткость при сложном напряжённом состоянии.
- 27. Потенциальная энергия деформации.
- 28. Теории прочности.
- 29. Расчёт гибких элементов на устойчивость.
- 30. Динамический расчёт элементов конструкций.

Примерный перечень вопросов для тестирования:

Вопросы для подготовки к Т 1

- 1. Что такое координатные площадки и какие напряжения на них действуют.
- 2. Закон парности касательных напряжений.
- 3. Условия на поверхности (напряжения на наклонной площадке).
- 4. Какие площадки называются главными.
- 5. Величина наибольших касательных напряжений.
- 6. Дифференциальные уравнения равновесия.
- 7. Обозначение перемещений в декартовой, цилиндрической, сферической системах координат.
- 8. Что такое линейная деформация, угловая деформация. Что такое объемная деформация и чему она равна.

Вопросы для подготовки к Т 2

- 9. Соотношения Коши для линейных и угловых деформаций в декартовой системе координат.
- 10. Уравнения неразрывности деформаций в декартовой системе координат.
- 11. Соотношения Коши для линейных деформаций в цилиндрической системе координат.
- 12. Закон Гука для линейных и угловых деформаций в декартовой, цилиндрической, сферической системах координат.
- 13. Закон Гука для нормальных и касательных напряжений, для шаровых тензоров и девиаторов.
- 14. Закон упругого изменения объема. Постоянные Ляме.
- 15. Сколько и какие уравнения составляют полную систему уравнений теории упругости.
- 16. Уравнения неразрывности деформаций (условия совместности деформаций СенВенана), их физический смысл.
- 17. Граничные условия.

Критерии оценки ответов:

- 1. Полнота знаний теоретического контролируемого материала.
- 2. Количество правильных ответов.

Промежуточная аттестация осуществляется в форме зачета.

Перечень вопросов для подготовки к зачету:

- 1. Цели и задачи курса «Теория упругости». История развития теории упругости.
- 2. Основные положения, гипотезы и принципы теории упругости.
- 3. Силы и напряжения. Метод сечения. Напряженное состояние в окрестности точки. Напряжения на координатных площадках. Напряжения на наклонной площадке.
- 4. Тензор напряжений. Шаровой тензор и девиатор напряжений. Инварианты тензора напряжений. Три вида напряженного состояния.
 - 5. Перемещения и деформации. Виды деформации. Формула для объемной деформации.
 - 6. Тензор деформаций. Шаровой тензор и девиатор деформаций.
 - 7. Полная система уравнений теории упругости в декартовых координатах.

- 8. Граничные условия в напряжениях и в перемещениях. Две основные задачи теории упругости. Смешанные граничные условия. Интегральные граничные условия.
 - 9. Постановка задачи теории упругости в перемещениях.
 - 10. Плоское напряженное состояние и плоская деформация.
- 11. Плоская задача теории упругости в декартовых координатах. Уравнения равновесия. Граничные условия в напряжениях. Соотношения Коши. Уравнение неразрывности деформаций. Закон Гука в прямой и обратной форме.
 - 12. Двухосное напряженное состояние.
 - 13. Постановка плоской задачи теории упругости в напряжениях. Функция напряжений.
 - 14. Решение плоской задачи теории упругости в полиномах.
- 15. Плоская задача теории упругости в полярных координатах. Уравнения равновесия. Соотношения Коши. Закон Гука в прямой и обратной форме.
 - 16. Полярно-симметричное распределение напряжений. Задача Ляме.
- 17. Анализ размерностей. Теоретические основы метода размерностей. Единицы измерения и размерности. Размерные и безразмерные величины

Шкалы оценки образовательных достижений

_	шкалы оценки образовательных достижении				
Баллы (итоговой рейтинговой оценки)	Оценка (балл за ответ на зачете)	Требования к знаниям			
100-65	«зачтено» - 35 баллов	 Оценка «зачтено» если он имеет знания основного материала, если он прочно усвоил программный материал, последовательно, четко и логически стройно его излагает его на зачете, владеет необходимыми навыками и приемами их выполнения, умеет тесно увязывать теорию с практикой Учебные достижения в семестровый период и результатами рубежного контроля демонстрируют достаточную степень овладения программным материалом. 			
64-0	«не зачтено» - 0 баллов	 Оценка «не зачтено» выставляется студенту, который не знает значительной части программного материала, допускает существенные ошибки. Как правило, оценка «не зачтено» ставится студентам, которые не могут продолжить обучение без дополнительных занятий по соответствующей дисциплине. Учебные достижения в семестровый период и результатами рубежного контроля демонстрировали не высокую степень овладения программным материалом по минимальной планке. 			

Итоговая оценка выставляется путем перевода набранных баллов в соответствии со следующей таблицей:

щей таолицей.					
Оценка по 5-балльной шкале	Сумма баллов за разделы и	Оценка ECTS			
	экзамен				
5 – «отлично»	90-100	A			
	85-89	В			
4 – « <i>xopouo</i> »	75-84	С			
	70-74	D			
2 (2) do o 7 am a a mum a 71 (10)	65-69	D			
3 – «удовлетворительно»	60-64	E			
2 – «неудовлетворительно»	Менее 60	F			

Учебно-методическое и информационное обеспечение учебной дисциплины

Обязательные издания

- 1. Молотников, В. Я. Теория упругости и пластичности / В. Я. Молотников, А. А. Молотникова. Санкт-Петербург: Лань, 2017. 532 с. https://e.lanbook.com/reader/book/94741/#4
- 2. Трусов, П. В. Теория пластичности: учебное пособие / П. В. Трусов, А. И. Швейкин. Пермь: ПНИПУ, 2011. 419 с. https://e.lanbook.com/reader/book/160922/#195

Дополнительные издания

- 3. Паначев, И. А. Основы теории упругости и пластичности : учебно-методическое пособие / И. А. Паначев, И. В. Кузнецов, А. В. Покатилов. Кемерово : КузГТУ имени Т.Ф. Горбачева, 2017. 107 с. https://e.lanbook.com/reader/book/105416/#4
- 4. Титов, А. В. Теория пластичности : учебное пособие / А. В. Титов, А. О. Фанифатов, Е. В. Затеруха. Санкт-Петербург : БГТУ "Военмех" им. Д.Ф. Устинова, 2014. 108 с. https://e.lanbook.com/reader/book/63706/#66

Программное обеспечение и Интернет-ресурсы:

- 1. ПК Лира программный комплекс для расчета стальных и железобетонных конструкций.
- 2. Текстовый процессор.
- 3. kompas 3d система 2x и 3x-мерного моделирования.

Материально-техническое обеспечение учебной дисциплины

Требования к условиям реализации дисциплины:

Аудитория для чтения лекций.

Компьютерный класс, оснащенный всем необходимым для проведения всех видов занятий.

Учебно-методические рекомендации для студентов

1. Указания для прослушивания лекций

Перед началом занятий внимательно ознакомиться с учебным планом проведения лекций и списком рекомендованной литературы.

Перед посещением очередной лекции освежить в памяти основные концепции пройденного ранее материала. Подготовить при необходимости вопросы преподавателю. Не надо опасаться, что вопросы могут быть простыми.

На лекции основное внимание следует уделять не формулам и математическим выкладкам, а содержанию изучаемых вопросов, определениям и постановкам задач.

В процессе изучения лекционного курса необходимо по возможности часто возвращаться к основным понятиям и методам решения задач (здесь возможен выборочный контроль знаний студентов).

Желательно использовать конспекты лекций, в которых используется принятая преподавателем система обозначений.

Для более подробного изучения курса следует работать с рекомендованными литературными источниками и вновь появляющимися источниками.

2. Указания для участия в практических занятиях

Перед посещением уяснить тему практического занятия и самостоятельно изучить теоретические вопросы.

В конце занятия при необходимости выяснить у преподавателя неясные вопросы.

Основные результаты выполнения работы необходимо распечатать.

- 3. Самостоятельная работа студентов обычно складывается из нескольких составляющих:
- работа с текстами: учебниками, историческими первоисточниками, дополнительной литературой, в том числе материалами интернета, а также проработка конспектов лекций;
 - написание докладов, рефератов;
 - подготовка к практическим занятиям;
 - подготовка к зачету непосредственно перед ним.

Таким образом, самостоятельная работа студентов является необходимым компонентом получения полноценного высшего образования.

Методические рекомендации для преподавателей

1. Указания для проведения лекций

На первой вводной лекции сделать общий обзор содержания курса и отметить новые методы и подходы к решению задач, рассматриваемых в курсе, довести до студентов требования кафедры, ответить на вопросы.

При подготовке к лекционным занятиям необходимо продумать план его проведения, содержание вступительной, основной и заключительной части лекции, ознакомиться с новинками учебной и методической литературы, публикациями периодической печати по теме лекционного занятия. Уточнить план проведения семинарского занятия по теме лекции. Перед изложением текущего

лекционного материала напомнить об основных итогах, достигнутых на предыдущих лекциях. С этой целью задать несколько вопросов аудитории и осуществить выборочный контроль знания стулентов.

В ходе лекционного занятия преподаватель должен назвать тему, учебные вопросы, ознакомить студентов с перечнем основной и дополнительной литературы по теме занятия. Раскрывая содержание учебных вопросов, акцентировать внимание студентов на основных категориях, явлениях и процессах, особенностях их протекания. Раскрывать сущность и содержание различных точек зрения и научных подходов к объяснению тех или иных явлений и процессов.

Следует аргументировано обосновать собственную позицию по спорным теоретическим вопросам. Приводить примеры. Задавать по ходу изложения лекционного материала риторические вопросы и самому давать на них ответ. Это способствует активизации мыслительной деятельности студентов, повышению их внимания и интереса к материалу лекции, ее содержанию. Преподаватель должен руководить работой студентов по конспектированию лекционного материала, подчеркивать необходимость отражения в конспектах основных положений изучаемой темы, особо выделяя, категориальный аппарат. В заключительной части лекции необходимо сформулировать общие выводы по теме, раскрывающие содержание всех вопросов, поставленных в лекции. Объявить план очередного практического занятия, дать краткие рекомендации по подготовке студентов к семинару. Определить место и время консультации студентам, пожелавшим выступить на семинаре с докладами и рефератами.

На последней лекции уделить время для обзора наиболее важных положений, рассмотренных в курсе.

2. Указания для проведения практических занятий

Четко обозначить тему занятия.

Обсудить основные понятия, связанные с темой занятия.

В процессе решения задач вести дискуссию со студентами о правильности применения теоретических знаний.

Отмечать студентов, наиболее активно участвующих в решении задач и дискуссиях.

В конце занятия задать аудитории несколько контрольных вопросов.

3. Указания по контролю самостоятельной работы студентов

По усмотрению преподавателя задание на самостоятельную работу может быть индивидуальным или фронтальным.

При использовании индивидуальных заданий требовать от студента письменный отчет о проделанной работе.

При применении фронтальных заданий вести коллективные обсуждения со студентами основных теоретических положений.

С целью контроля качества выполнения самостоятельной работы требовать индивидуальные отчеты (допустимо вместо письменного отчета применять индивидуальные контрольные вопросы).

Программа составлена в соответствии с требованиями ОС НИЯУ МИФИ и учебным планом основной образовательной программы.

Рабочую программу составил к.т.н., доцент Меланич В.М.

Рецензент к.т.н., доцент Магеррамова И.А.

Программа одобрена на заседании УМКН 08.03.01 «Строительство».

Председатель учебно-методической комиссии Меланич В.М.